
FFTJet: The User Manual

Igor Volobouev, i.volobouev@ttu.edu

Version: 1.4.1 Date: May 20, 2013

Contents

1 Introduction 2

1.1 Intended Use . 2
1.2 Emphasis on Pattern Recognition . 3

2 The Algorithm 5

2.1 Basic Choices . 6
2.2 Energy Discretization . 7

2.2.1 Filling the Grid . 9
2.2.2 Energy Discretization for Realistic Detectors 9

2.3 Finding the Preclusters . 10
2.3.1 AbsConvolverBase and its Implementations 11
2.3.2 Choosing the Kernel . 15
2.3.3 Peak Finder . 16
2.3.4 Peak Selector . 17
2.3.5 Resolution Scales . 18
2.3.6 The Clustering Tree . 18
2.3.7 Determining the Event Topology . 20
2.3.8 Avoiding Bifurcation Points . 21

2.4 Jet Energy Reconstruction . 21
2.4.1 Jet Membership Functions . 21
2.4.2 Energy Recombination Schemes . 24
2.4.3 Jet Reconstruction API . 25

3 Supporting Functionality 29

3.1 Visualizing Clustering Trees . 29
3.2 Persistent Interpolation Tables . 30
3.3 Jet Energy Correction . 32

A FFTJet Kernel Functions 34

A.1 2-d Kernels . 34
A.2 1-d Kernels . 36

References 38

Functions and Classes 39

1

1 Introduction

1.1 Intended Use

The primary intended use of the FFTJet package is reconstruction of particle jets in High
Energy Physics collider data. FFTJet library allows the user to implement a variety of jet
reconstruction scenarios following the same basic two-stage approach: first, pattern recog-
nition is performed whereby “preclusters” are found in the η -ϕ space1 and then jets are
reconstructed using preclusters as initial approximate jet locations. This approach has sev-
eral important advantages over the cone, kT, and anti-kT jet reconstruction algorithms
commonly used at hadron collider experiments:

• The techniques used to determine the jet energies are not necessarily optimal for de-
termining the event topology (the number of jets). These problems are distinct and
should be solved separately.

• FFTJet tools can be used to preserve as much energy flow information as possible
within the jet reconstruction paradigm. This information is presented in a well-
organized form convenient for pattern recognition applications and detailed analysis of
jet substructure.

• The computational complexity of the pattern recognition stage is O(SN logN), where
N is on the order of the number of towers in the detector calorimeter, and S is the user-
selectable number of resolution scales (cone and sequential recombination algorithms
in their standard form use only one resolution scale). This complexity is independent
from the detector occupancy and thus allows for predictable execution times which can
be important for online use.

• The main computational engine behind the pattern recognition stage is Discrete Fast
Fourier Transform (DFFT). Due to widespread availability of DFFT implementations,
the calculations can be performed on a variety of hardware including Digital Signal
Processors (DSPs) and Graphics Processing Units (GPUs).

• Reconstructed jets normally have well-defined shapes which simplifies energy calibra-
tion and pile-up subtraction.

• The knowledge of the jet shape asymmetry in the η -ϕ space can be effectively utilized
which results in a superior algorithm performance in the presence of magnetic field.

• The pattern recognition stage permits an efficiency correction which takes into account
the detector boundary.

1The precise meaning of the η variable is up to the user of the package (typically, this will be rapidity or
pseudorapidity), while ϕ is assumed to be the azimuthal angle of the energy deposit. Section 2.2 provides
more details.

2

• Provisions are made for efficient suppression of the detector noise both at the pattern
recognition and at the energy reconstruction stages.

The jet energy reconstruction (a.k.a. recombination) stage which follows pattern recognition
supports both “crisp” and “fuzzy” clustering. In the “crisp” clustering approach, each
calorimeter tower is assigned to a single jet (or to the underlying event/noise), just as in the
kT or cone algorithm. In the “fuzzy” clustering each calorimeter tower is assigned to every
jet with a weight. Fuzzy clustering allows for modeling such effects as the irreducible spatial
energy smearing which occurs during shower development inside particle calorimeters.

1.2 Emphasis on Pattern Recognition

The jet reconstruction model implemented by the FFTJet package was inspired by Refs. [1]
and [2] and initially proposed in [3]. Ref. [1] establishes an important connection between the
iterative cone algorithm (known as the “Mean Shift” algorithm in the pattern recognition
literature) and another statistical technique, kernel density estimation (KDE) [4]. It turns
out that the locations of the stable cone centers correspond to modes (peaks) of the energy
density built in the η -ϕ space using kernel density estimation with the Epanechnikov kernel.
That is, all such centers can be found by convolving the empirical energy density

ρ emp(η, ϕ) =
∑

i

εiδ
2(η − ηi, ϕ− ϕi)

with the function

Epanechnikov(η, ϕ) =

{

1− (ϕ2 + η2)/R2, ϕ2 + η2 < R2

0, ϕ2 + η2 ≥ R2

and then funding all local maxima of the convolution2. Here, ε is an energy variable whose
actual meaning is user-defined (typically, transverse momentum or transverse energy of a par-
ticle, calorimeter tower, etc.) and R is the cone radius in the η -ϕ space.

The connection between the iterative cone algorithm and KDE immediately suggests
an efficient implementation of a seedless cone algorithm: one should discretize the calorime-
ter signals (or MC particles) on a regular grid in the η -ϕ space, perform the convolution by
DFFT, and find the peaks. This approach, however, does not address an important problem
inherent in the cone-based jet reconstruction. This problem manifests itself as the pattern
recognition ambiguity illustrated in Figure 1. Two energy deposits of similar magnitude
separated by a distance larger than R but smaller than 2R produce three stable cone centers
whose positions are shown with the arrows at the bottom of the figure. In all current im-
plementations of cone-based jet reconstruction procedures, this problem is addressed by the
“split-merge” stage which happens after the stable cone locations are determined. During
this stage, jets are merged if the energy which falls into the common region exceeds a prede-
fined fraction of the energy of the jet with smaller magnitude. Even if the search for stable

2The reader familiar with the concept of “Snowmass potential” will recognize that this potential repro-
duces such a convolution up to a negative constant factor.

3

RR

2 R

Figure 1: The locations of the three stable clusters reconstructed by the ideal iterative cone
algorithm from two energy deposits are shown by the arrows at the bottom.

Cone Filtering

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

Narrow Gaussian

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

Wide Gaussian

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

Figure 2: The convolution of two energy deposits with the Epanechnikov kernel (left) and
with two Gaussian kernels of different width.

cones is performed in the infrared and collinear safe manner, the outcome of the split-merge
stage is no longer safe because the decision on whether to merge two jets depends on the
minute details of the energy deposition structure.

Another way to look at this problem and a possible solution is illustrated in Figure 2.
The third stable cone center between the two energy deposits happens because the sum of
two Epanechnikov kernels placed at the locations of the deposits has a spurious peak in the
middle. However, there is a variety of kernels which do not suffer from this problem. In
particular, the Gaussian kernel produces either two (narrow kernel) or one (wide kernel)
peaks, as shown. Even though one still has to address the question of choosing the kernel
width, the Gaussian kernel has a very important advantage: the whole split-merge stage is
no longer necessary.

An intelligent choice of the kernel width (or the R parameter in the kT and cone al-
gorithms) can not be performed until some assumptions are made about the expected jet
shapes. In fact, optimal choice will be different for different signals. For example, a data
analysis which searches for high energy dijet events with two well-separated jets is likely to
make very different assumptions about jets from a data analysis which looks for tt̄ events
in the all-hadronic, 6-jet mode. Moreover, the optimal width is not necessarily the same

4

for every jet in an event, as low momentum jets tend to have wider angular profiles, espe-
cially in the presence of magnetic field. Because of this, it is interesting to look at the jet
structure of an event using a variety of kernel width (cone radii, etc.) choices. In the limit
of continuous kernel width we arrive to a description of event energy flow known as “mode
tree” in the nonparametric statistics literature or “scale-space image representation” in the
computer vision theory. The information contained in such a description permits a variety
of optimization strategies for jet reconstruction which will be discussed in section 2.3.7.

The FFTJet approach differs significantly from the majority of jet reconstruction algo-
rithms in the following way: FFTJet code by itself does not decide how particle jets look
like. Instead, the package user is supposed to define a jet shape model, and the code will
efficiently search for jet-like structures in the event energy flow patterns. The rationale for
this view of jet reconstruction comes from the realization that, in practice, the instrumen-
tal effects (nonlinear response and finite energy resolution of the calorimeter, presence of
the magnetic field in the detector, material in front of the calorimeter, pile-up, noise, etc.)
must be taken into account, and will almost surely dominate the systematic error of any
precision measurement based on jets. Therefore, a unified definition of “what is a jet” can
not be achieved across detector measurements in a variety of particle processes and HEP
experiments.

The jet shape models supported by FFTJet can range from very simple (e.g., local
energy maximum within a sliding window in the η -ϕ space) to quite sophisticated (e.g.,
energy and flavor-dependent jet fragmentation function for several detector observables). If
their agreement with observations is good, complex models will result in better statistical
precision of jet energy determination. On the other hand, simpler approaches can be less
sensitive to model misspecifications and will usually require less computing time.

2 The Algorithm

The users of the FFTJet package are expected to reconstruct jets using the following sequence
of steps:

1. The event energy distribution is discretized using a grid in the η -ϕ space.

2. The discretized energy distribution is convolved with a kernel functionK(η, ϕ, s), where
s is the resolution scale parameter which determines the width and, possibly, the shape
of the kernel. Many standard kernel functions are included in the FFTJet package, and
user-defined kernels can be seamlessly added as well. The convolution is performed by
DFFT.

3. The peaks of the convoluted energy distributions are found. These are potential
“preclusters”.

4. Preclusters with small magnitudes are eliminated in order to suppress the calorime-
ter noise3.

3Even in the absence of such noise, fake preclusters will be detected due to the presence of round-off

5

5. The previous three steps are repeated as many times as necessary using different values
of s. The resulting preclusters are arranged in the “clustering tree” structure.

6. Using the clustering tree information and assumptions about expected signal signature,
a decision is made about the event topology by choosing a set of preclusters. These
preclusters are passed to the jet energy reconstruction stage.

7. Reconstruction of the jet energies is performed as follows. The event is viewed as
a collection of energy deposits characterized by their direction (η, ϕ) and energy ε.
Depending on the environment in which the code is used, these deposits can origi-
nate from detector calorimeter cells, reconstructed tracks, Monte Carlo particles, etc.
A cluster membership function Mi(η−ηi, ϕ−ϕi, ε, si) is associated with each precluster
i at angular coordinates (ηi, ϕi) and scale si. There is also a membership function for
the unclustered energy/underlying event.

The cluster membership functions are evaluated for every energy deposit in the event.
In the “crisp” clustering scenario, an energy deposit is assigned to the jet whose mem-
bership function for this deposit is the largest. In the “fuzzy” scenario, the deposit is
split between all jets with weights proportional to their respective membership function
values (the sum of all weights is normalized to 1 to ensure energy conservation).

This sequence should work well for a wide variety of HEP data analyses. Yet, if necessary,
the balance between the code speed and the precision of jet energy determination can be
shifted in either direction. For example, to speed things up, the pattern recognition can be
performed at a single predefined scale s0. Alternatively, to further improve the jet energy
resolution, an iterative jet energy determination procedure can be added as a final step.
In such a procedure, the jet directions (ηi, ϕi) and the membership function scales si are
updated at each iteration using reconstructed jets from the previous iteration until some
convergence criterion is satisfied.

The rest of this section explains how to execute this plan using the facilities provided by
the FFTJet package.

2.1 Basic Choices

A large fraction of the FFTJet package code is provided in the form of C++ templates.
This implementation allows for a significant flexibility in configuring the jet reconstruction
procedure. However, this also means that several decisions about classes and types used
inside the templates must be made by the user:

• Which library to use for DDFT? This choice will determine which real and complex
types FFTJet will operate on. FFTJet code uses external DDFT libraries through
an abstract interface: the AbsFFTEngine class. The following concrete implementations
of this interface are provided with the package:

errors in the DFFT procedure.

6

FFTWDoubleEngine: interface to the double precision version of the FFTW library
from www.fftw.org.

FFTWFloatEngine: interface to the single precision version of the FFTW library.

CUFFTFloatEngine: interface to the single precision DFFT implementation in the
NVIDIA Compute Unified Device Architecture (CUDA). This interface allows you to
run parts of the FFTJet pattern recognition code on modern NVIDIA graphics cards.

The FFTJet package can be interfaced to any other DFFT library by writing a corre-
sponding adapter class derived from AbsFFTEngine.

FFTJet users are advised to structure their code in such a way that its dependence on
a particular DFFT library is minimized. Whenever possible, the user code should rely
upon the “AbsFFTEngine.hh” header rather than on one of the concrete implementa-
tion headers. This will allow for future DFFT library replacements with minimal code
adjustment.

• How to represent 4-vectors? The 4-vector class performance can significantly affect
the speed of the jet energy reconstruction stage. To be compatible with FFTJet, the
4-vector class must possess at least the following minimal set of features:

— There is a way to build a vector from its coordinates.

— There is a default constructor which creates a null vector.

— The copy constructor and the assignment operator are defined (e.g., generated by
the compiler).

— Binary multiplication operator is defined for multiplying a vector (on the left) by
a double (on the right).

— Operator += is defined for in-place addition of one vector to another.

Any class which is syntactically compatible with the above requirements can be used
with the jet energy recombination algorithms provided by the FFTJet package. It is
likely that such a class would already be available to the package user (“HepLorentzVec-
tor” class from the CLHEP library [5] is a typical example). Due to an extensive use
of vector algebra by the FFTJet code, simple and efficient 4-vector implementations
without virtual methods should be preferred. One such implementation can be found
in the “examples/kinematics” subdirectory of the package (class rk::P4 declared in the
header file “rk.hh”).

It is convenient to summarize these decisions in a header file which contains the relevant
“typedef” statements. The “fftjet typedefs.hh” file in the “examples” subdirectory of the
package illustrates this approach.

2.2 Energy Discretization

The purpose of the energy discretization step is to create a grid equidistant in the η -ϕ space
and to populate this grid with the observed energy values. The exact meaning of η and

7

“energy” is up to the package user — the package itself does not make any assumptions.
Some reasonable convention should be adopted. In the analysis of experimental data, it is
common to reconstruct jets using pseudorapidity for η and transverse energy for “energy”4.
The ϕ is assumed to be the azimuthal angle of the energy deposit.

The grid in the η -ϕ space is created using the Grid2d class. The class constructor decla-
ration looks like this:

Grid2d(unsigned nEtaBins, Real etaMin, Real etaMax,

unsigned nPhiBins, Real phiBin0Edge,

const char* title = "");

The constructor arguments are as follows:

nEtaBins Number of cells in the η direction.
etaMin, etaMax The grid boundaries in η.
nPhiBins Number of cells in ϕ.
phiBin0Edge Azimuthal angle of the boundary separating ϕ cells with numbers

0 and nPhiBins−1.
title An arbitrary name for the grid. Intended for subsequent use by

some user-developed code which visualizes the grid contents.

It is convenient to think that the grid splits the η -ϕ space into rectangular cells, like a his-
togram. The cell with index (i, j) has corners at

(η, ϕ) bottom,left = (etaMin + i
etaMax− etaMin

nEtaBins
, phiBin0Edge + j

2π

nPhiBins
)

(η, ϕ) top,right = (etaMin + (i+ 1)
etaMax− etaMin

nEtaBins
, phiBin0Edge + (j + 1)

2π

nPhiBins
)

where 0 ≤ i < nEtaBins, 0 ≤ j < nPhiBins.
The cell sizes in η and ϕ should be normally chosen in such a way that they reflect the

granularity of the calorimeter used to measure the jet energy. Ideally, the cell width in ϕ
(which is just 2π/nPhiBins) should be equal to the calorimeter segmentation in ϕ, and the
cell width in η should be equal to the finest calorimeter segmentation in η. On the other
hand, choice of “nEtaBins” and “nPhiBins” parameters should allow for subsequent efficient
DFFT of the grid data, so that exact powers of two are preferred5. The grid boundaries in η
should be chosen in such a way that the grid η range not only fully covers the η acceptance
region of the calorimeter but also exceeds it by some reasonable amount. This excess is
needed to provide a guard area against spill-overs from high η into lower η region (and back)
during convolutions6.

4Using rapidity and transverse momentum instead, one arrives at a procedure which is invariant under
boosts along the beam direction. This approach can be attractive for theoretical studies. However, these
quantities can not be determined by realistic calorimeters which measure energy and direction.

5The majority of DFFT libraries only support transforms of certain sizes. Check with the DFFT library
description for details.

6These spill-overs happen because 2d DFFT assumes periodical structure not just in ϕ but also in η; the
effective topology therefore becomes toroidal rather than cylindrical. For more details see, e.g., section 13.1
in Ref. [6].

8

In case the energy distribution does not have a natural granularity (e.g., when Monte
Carlo particles are clustered) the size of the grid cells should be chosen in such a way that
the binning effects do not prevent you from seeing the smallest resolution details you are
interested in. A good rule of thumb (based on the Nyquist sampling theorem) is that in
each direction the discretization grid granularity should be two times finer than the smallest
interesting detail.

2.2.1 Filling the Grid

It is assumed here that the same Grid2d object is used to analyze a large number of events.
The “reset” method should be used to clear the grid between these events. The grid is
normally filled using either “fillFast” or “fill” methods. One of these methods should be
called for every energy deposit in the event. The signature is as follows:

void fillFast(Real eta, Real phi, Real energy);

void fill(Real eta, Real phi, Real energy);

The “fillFast” method works just as you would expect a typical histogram filling function
to work: the index of the rectangular cell within which eta and phi values fall is determined,
and the energy of that cell is incremented by the given amount. The “fill” method is
somewhat different: it distributes the energy between four nearest grid cells in such a way
that the energy centroid in the η -ϕ space coincides with the direction provided by the eta
and phi arguments.

2.2.2 Energy Discretization for Realistic Detectors

The granularity of calorimeters in HEP experiments is usually not constant throughout the
full η acceptance range. Even if the locations and sizes of discretization grid cells match
the calorimeter tower locations fairly well in some η region (e.g., in the barrel not far from
η = 0), such matching can not be maintained everywhere. Moreover, some experimental
setups use hexagonal towers which can not be easily matched to a rectangular grid.

Typically, the signal location within a single calorimeter tower can not be determined,
and it becomes natural to assume a flat probability distribution for the signal location across
the tower face. To carry the information contained in this assumption through the signal
discretization process, the user of the FFTJet package is encouraged to create a table of
weights with which each calorimeter tower contributes to the nearby grid cells. The signal
observed in the tower should then be divided among the cells in proportion to the weights.

The weights can be determined by calculating the amount of overlap in the η -ϕ space
between the grid cell areas and the tower face. This calculation can be performed by the func-
tions rectangleRectangleOverlap and rectanglePolygonOverlap declared in the “rectangleOver-
lap.hh” header. Please check this header for more details about the usage of these functions.

If the user creates such a table of weights, the signal discretization should be performed
using either “fillBin” or “uncheckedFillBin” methods of the Grid2d class. The signature of
these methods looks like this:

9

void fillBin(unsigned etaBin, unsigned phiBin, Real energy);

void uncheckedFillBin(unsigned etaBin, unsigned phiBin, Real energy);

The “uncheckedFillBin” function works slightly faster by not testing whether the “etaBin”
and “phiBin” arguments are valid. The “energy” argument should be set to the transverse
energy (transverse momentum, etc.) of the calorimeter tower multiplied by the weight with
which this tower contributes to the grid cell with index (etaBin, phiBin).

2.3 Finding the Preclusters

The FFTJet package provides a high-level driver class for finding the preclusters (steps 2
through 5 of the algorithm sequence): ClusteringSequencer. The simplest way of performing
the pattern recognition with FFTJet consists in constructing an object of this class at the
beginning of the data analysis job and then running its “run” function on each discretized
event. The most important part of the ClusteringSequencer declaration (in the “Cluster-
ingSequencer.hh” header file) looks like this:

template<typename Real>

class ClusteringSequencer

{

public:

ClusteringSequencer(

AbsConvolverBase<Real>* convolver,

Functor1<bool,Peak>* selector,

const PeakFinder& peakFinder,

const std::vector<double>& initialScales,

unsigned maxAdaptiveScales=0, double minRatioLog=0.01);

virtual int run(const Grid2d<Real>& eventData,

AbsClusteringTree<Peak,long>* outputTree);

virtual int insertCompleteEvent(

double scale, const Grid2d<Real>& eventData,

AbsClusteringTree<Peak,long>* outputTree, double dataCutoff=0.0);

};

As you can see, this driver class is a template. Its argument type, “Real”, must be compatible
with the DFFT library chosen. The constructor arguments have the following meaning:

10

convolver A pointer to an object conforming to the AbsConvolverBase interface.
Such objects calculate and manage Fourier transforms of the data
and the kernels and perform their convolutions.

selector A pointer to an object conforming to the Functor1<bool,Peak>
interface. Such objects are used to eliminate fake preclusters.

peakFinder An object which finds the modes of the convolved energy distributions.
initialScales A collection of resolution scales for which the peak finding will be

performed.
maxAdaptiveScales Maximum number of additional scales to use for adaptive pattern

recognition.
minRatioLog This parameter determines the minimum separation between the

scales used in the adaptive pattern recognition stage.

The clustering sequencer will not own the AbsConvolverBase and Functor1<bool,Peak> ob-
jects, that is, it will not attempt to call the “delete” operator on the “convolver” and “se-
lector” pointers in its own destructor. It is a responsibility of the user of this class to make
sure that the ”run” method is called only when the objects to which these pointers refer are
still alive. The “run” arguments are as follows:

eventData Discretized event energy distribution.
outputTree A pointer to an object conforming to the AbsClusteringTree interface.

Such objects are used to arrange pattern recognition results in a form
convenient for subsequent analysis.

After calling the “run” method, the user can also invoke the “insertCompleteEvent” function.
This function inserts the whole event into the clustering tree at the lowest resolution scale.
It will be useful to perform this insertion if the clustering tree is going to be utilized as
a balltree [7] during subsequent pattern recognition calculations.

2.3.1 AbsConvolverBase and its Implementations

Note that the kernel which is convolved with the event data during the pattern recognition
stage does not change from one event to another. This means that the Fourier images of such
a kernel can be calculated only once for each scale and then stored for subsequent lookups.
The AbsConvolverBase class declares an interface to the relevant services for the rest of the
FFTJet package code.

Multiple concrete implementations of the AbsConvolverBase functionality are provided
with the FFTJet package: KernelConvolver, FrequencyKernelConvolver, MultiKernelConvolver,
SequentialConvolver, and FrequencySequentialConvolver. The KernelConvolver class imple-
ments a basic model in which the discretized event data is convolved with a single kernel
K(η, ϕ, s) whose functional form in provided in the η -ϕ space. The FrequencyKernelCon-

volver performs convolutions with a single kernel represented in the frequency domain. The
MultiKernelConvolver convenience class allows the user to construct sophisticated kernels by
multiplying and/or dividing images of simpler kernels in the frequency space (which corre-
sponds to their convolution and/or deconvolution in the η -ϕ space). SequentialConvolver

11

and FrequencySequentialConvolver perform sequential 1-d Fourier transforms instead of 2-d
transforms. This can be useful in case expected jet shape is different for different η bins7.

The user of the FFTJet package would normally only need to know how to construct
one of the concrete convolver classes, while the remaining AbsConvolverBase methods are
needed for internal package functionality and are not of particular interest to the application
developers. The declaration of the simpler KernelConvolver constructor looks like this:

template<typename Real, typename Complex>

class KernelConvolver : public AbsKernelConvolver<Real, Complex>

{

public:

KernelConvolver(const AbsFFTEngine<Real,Complex>* fftEngine,

const AbsKernel2d* kernel,

unsigned minFixBin=0, unsigned maxFixBin=0);

};

The “Real” and “Complex” template parameters must be compatible with the DFFT library
chosen. For its operation, KernelConvolver needs instances of AbsFFTEngine and AbsKernel2d

classes. The former class has already been discussed in section 2.1, while the latter represents
the kernel function in the η -ϕ space . A variety of such functions is supplied with the
FFTJet package; the choice of the kernel is discussed in more detail in section 2.3.2, and
the complete list of kernels is provided in the Appendix A. The arguments “minFixBin”
and “maxFixBin” can be used to request a clustering efficiency correction near the detector
boundary. It is assumed that the energy discretization grid η bins with numbers equal to
and above “minFixBin” but below “maxFixBin” correspond to the detector fiducial region.
If either “minFixBin” or “maxFixBin” parameter has any other value besides default 0,
the KernelConvolver code will provide a clustering efficiency correction by multiplying the
grid data with an η-dependent efficiency flattening curve which ensures that the total energy
between “minFixBin” and “maxFixBin” remains constant and does not depend on the kernel
scale (that is, energy leakage outside the given η range due to convolution is prevented). It is
not clear at this time how such a procedure affects the angular resolution of the preclusters
and subsequent jet reconstruction steps, so this feature should be considered experimental.

The FrequencyKernelConvolver constructor is very similar. The only difference is that it
takes a pointer to an instance of the AbsFrequencyKernel abstract class instead of AbsKernel2d.
Classes derived from AbsFrequencyKernel calculate two-dimensional kernels directly in the
frequency domain.

The MultiKernelConvolver constructor is slightly more complicated:

template<typename Real, typename Complex>

class MultiKernelConvolver : public AbsKernelConvolver<Real, Complex>

{

7For example, the effect of the magnetic field on the jet shape observed in the detector depends on the
radial distance at which the jet hits the calorimeter. This distance will be η-dependent for calorimeters
placed at the detector sides (wall, plug, endcap).

12

public:

MultiKernelConvolver(const AbsFFTEngine<Real,Complex>* fftEngine,

const KernelSet* kernelSequence,

unsigned minFixBin=0, unsigned maxFixBin=0);

};

The meaning of the “fftEngine”, “minFixBin”, and “maxFixBin” parameters is the same
as in the KernelConvolver constructor. The “kernelSequence” parameter is a pointer to
a collection of kernels which are combined in the frequency space. The kernel image is
built by the MultiKernelConvolver according to the following formula:

FK(~ω, s) =

∏

i FAi
(~ω, s)

∏

i FBi
(~ω, s)

∏

i FCi
(~ω, s)

∏

i(1 + |FDi
(~ω, s)|2) (1)

For every i, Ai is a kernel whose functional form in provided in the frequency space. Bi

and Ci are kernels whose functional forms are provided in the η -ϕ space. |FDi
(~ω, s)|2 is

a power spectrum of a kernel Di whose functional form in provided in the η -ϕ space. This
form of the convoluted kernel image is sufficiently general to allow for a variety of convolu-
tion/deconvolution approaches to event reconstruction. The kernels Ai, Bi, Ci, and Di are
specified using the helper class KernelSet:

class KernelSet

{

public:

explicit KernelSet(bool ownsPointers,

double regularizationFraction=0.0);

void setRegularizationFraction(double fraction);

std::vector<const AbsFrequencyKernel*> filter;

std::vector<const AbsKernel2d*> numerator;

std::vector<const AbsKernel2d*> denominator;

std::vector<const AbsKernel2d*> denoiser;

};

The correspondence between the class members and the Eq. 1 components is realized as
follows:

Ai — filter

Bi — numerator

Ci — denominator

Di — denoiser8

8It is named like that because the expression 1
1+|FD(~ω,s)|2 is the Wiener filter [6] for reconstructing an-

gular delta functions given the noise power spectrum |FD(~ω, s)|2. One can, for example, perform a crude
reconstruction of parton directions in the η -ϕ space by treating jets themselves as angular noise added to
the parton directions. In this case D should represent the angular jet profile.

13

Note that “filter”, “numerator”, “denominator”, and “denoiser” vectors are public mem-
bers of the KernelSet class, and thus one can build a KernelSet object incrementally. If the
constructor argument “ownsPointers” is set to “true” then KernelSet will call the “delete”
operator on all elements of “filter”, “numerator”, “denominator”, and “denoiser” vectors
in its destructor. The constructor argument “regularizationFraction” or method “setRegu-
larizationFraction” can be used to regularize the deconvolution by setting a fraction of the
combined kernel frequencies to 0. This may be necessary if the vector “denominator” is not
empty, and some of the frequencies in the

∏

i FCi
(~ω, s) are exactly 0 or close to 0.

The SequentialConvolver constructor looks as follows:

template<typename Real, typename Complex>

class SequentialConvolver : public AbsSequentialConvolver<Real, Complex>

{

public:

SequentialConvolver(const AbsFFTEngine<Real,Complex>* etaEngine,

const AbsFFTEngine<Real,Complex>* phiEngine,

const AbsKernel1d* etaKernel,

const AbsKernel1d* phiKernel,

const std::vector<double>& phiScales,

unsigned minEtaBin=0, unsigned maxEtaBin=UINT_MAX,

bool fixEfficiency=false);

}

This class needs two AbsFFTEngine objects, one for η convolutions and one for ϕ. These
objects should be prepared to perform 1-d Fourier transforms compatible with the corre-
sponding discretization grid binning. “etaEngine” and “phiEngine” are allowed to point to
the same object if the number of grid bins is the same in η and ϕ. The arguments “etaKer-
nel” and “phiKernel” point to separate convolution kernels in η and ϕ (they can also point
to the same object if the user wants to use the same kernel in η and ϕ). These kernels are
instances of the AbsKernel1d class which specifies the interface for one-dimensional kernel
functions. Convolutions are first performed in ϕ, for each η bin, using “phiEngine” and
“phiKernel”. The number of scales provided in the “phiScales” vector should be equal to
the number of η bins in the grid. These individual scales will be multiplied by the global
scale to obtain the actual kernel scale for each η bin separately. The arguments “minEtaBin”
and “maxEtaBin” can be used to limit the range of η bins for which the ϕ convolution is
performed. In partucular, these arguments can be used to exclude η padding bins (the bin
with number “minEtaBin” will be convoluted and the bin with number “maxEtaBin” will
not be). The clustering efficiency correction for the detector boundary will be performed
only if the argument “fixEfficiency” is set to “true”. For this task, “minEtaBin” and “max-
EtaBin” parameters play the same role as “minFixBin” and “maxFixBin” parameters of
KernelConvolver.

The FrequencySequentialConvolver constructor is similar to the SequentialConvolver con-
structor. Instead of AbsKernel1d it uses AbsFrequencyKernel1d objects which represent 1-d
kernels defined in the frequency domain.

14

2.3.2 Choosing the Kernel

The optimal choice of the pattern recognition kernel will depend on the analysis strategy
and the amount of information the user has about the signal and the background at the
time pattern recognition is performed. The typical role which kernel plays is that of the
low-pass spatial filter int η-ϕ space: it is supposed to recognize jet-like structures present
in the event and it must suppress higher spatial frequency random noise present due to
fluctuations in the showering and hadronization processes, instrumental noise, etc. If signal
and background properties are well understood, the filter can be designed to provide optimal
pattern recognition for the process of interest (Wiener filtering [6]). This, however, is not
a typical usage for a jet clustering algorithm in a HEP experiment. Instead, it is often more
desirable to cluster jets “on average”, in a manner consistent with a wide variety of signal
and background hypotheses.

The FFTJet package allows the user to choose from a variety of jet reconstruction strate-
gies. A fast and efficient pattern recognition can be performed at a single resolution scale
(which is similar to using jets reconstructed at one cone radius). Here, a proper kernel choice
will allow the user not only to avoid the split-merge stage but also to take into account the
non-symmetrical jet shape in the presence of magnetic field. Indeed, at sufficiently high val-
ues of transverse momenta (above pT = 10 GeV/c or so) the width of the transverse jet profile
scales inversely proportional to jet pT . At the same time, the angular distance between the
direction of the jet axis and the location where charged particles hit the calorimeter in the
magnetic field also scales in the inverse proportion to particle’s pT .

9 This leads to a situation
in which the jets have a characteristic η to φ width ratio which remains stable through-
out a wide range of jet energies. Jet reconstruction sequence using a single resolution scale
is implemented in the FFTJet package with a high-level driver class ConstScaleReconstruc-

tion. The usage of this class is illustrated in detail in the “singleScaleExample.cc” example
program.

Modern HEP experiments often employ cone and kT algorithms for jet reconstruction
using several different values of the R parameter which determines characteristic jet width.
The FFTJet package takes this strategy to its logical conclusion and allows the user to view
the energy flow in the event as a collection of jet structures reconstructed using a continuous
range of angular resolution scales. In order to locate patterns which correspond to actual
physics processes in this “scale space” view of jet reconstruction, it becomes essential to
establish hierarchical relationships between structures found at larger and smaller scales. If
we want to establish these relationships in a meaningful way, the number of jets found should
decrease when the resolution scale increases. This places an important technical requirement
on the kernel or sequence of kernels used at different scales: the number of peaks found after
convolving the kernel with the event energy structure should decrease with increasing scale,
no matter how the event energy flow looks like.10

9More precisely, sin(∆ϕ) is inversely proportional to particle’s radius of gyration and, therefore, inversely
proportional to particle’s pT as well.

10Of course, sequential recombination algorithms satisfy this requirement automatically. The problem
with these algorithms is that their scale parameter does not necessarily have a meaningful relation to the

15

It turns out that, in the form stated above, this requirement is very strict. It is not
known at this time whether such a kernel or a sequence of kernels can actually be con-
structed. Nevertheless, the Gaussian kernel (and, in particular, its discretization-corrected
implementation in the DiscreteGauss2d class) comes very close to fulfilling this requirement
for all practical purposes.11 In general, an optimal choice of a pattern recognition kernel
should result both in good local properties of the reconstructed jets (robustness with respect
to small variations in jet energy flow and resistance to noise) and in good scaling properties:
the event topology should vary naturally in the scale space.

2.3.3 Peak Finder

The FFTJet peak finding algorithm is used to locate cells of the filtered energy distributions
which are higher than all 8 of their neighbors in the η -ϕ space. The algorithm also knows
how to process somewhat more complicated peak patterns, e.g., when two or three nearby
cells have the same magnitude which is higher than the magnitude of all their neighbors.
The algorithm is implemented in the PeakFinder class whose constructor prototype looks like
this:

PeakFinder(double peakHeightCutoff,

bool subCellResolution=true,

unsigned minEtaBin=1, unsigned maxEtaBin=UINT_MAX,

bool printFitWarnings=false);

The constructor arguments have the following meaning:

peakHeightCutoff Peak finder will only look for peaks whose magnitude is above this
cutoff. It is important to raise this cutoff above the level of noise
generated by DFFT round-off errors. To get an idea what this noise
is, transform discretized data from a few events forward and backward
and subtract the doubly transformed image from the original.
The “estimateFFTNoise” executable in the “examples” directory
illustrates this approach.

instrumental measurement uncertainty, and in practice optimization of such a parameter often does little to
improve the jet energy resolution.

11Gaussian kernel works flawlessly in one dimension. In more than one dimension, situations in which
the number of peaks increases with increasing scale do arise, albeit infrequently. For example, three energy
depositions of equal magnitude placed at the corners of an equilateral triangle will, for a certain narrow
range of resolution scales, produce a spurious fourth peak at the triangle center.

16

subCellResolution If “true”, the code will fit a two-dimensional second order polynomial
using least squares to the energy values of the 9 cells near the peak.
The peak location will be determined from this polynomial rather
than from the coordinates of the highest cell. Moreover, the peak will
be ignored if the Hessian matrix of the fitted polynomial in not negative
definite. It is necessary to turn the subcell resolution on if you intend
to use peak Hessian and/or Laplacian for some purpose. If the subcell
resolution is turned off, the peak finder will run faster but its results
will be less precise and somewhat less reliable.

minEtaBin, These arguments can be used to limit the range in which the peak
maxEtaBin finding is performed to bin numbers between minEtaBin (included)

and maxEtaBin (excluded). No matter what these arguments are, the
code will not look for peaks in the very first and the very last eta bins
of the energy discretization grid.

printFitWarnings If this argument is “true”, the peak finder will be verbose about
unreliable polynomial fits, Hessians which are not negative definite,
etc. It may be useful to turn these warnings on when peak height
cutoff tuning is performed. A large number of warnings usually
indicates that the cutoff should be increased.

2.3.4 Peak Selector

Peak selectors are used after the peak finding step in order to simplify subsequent pattern
recognition work. Prior to clustering tree construction, the main purpose of peak selection
is suppression of low magnitude peaks produced by the calorimeter noise. For example, the
spectrum of peak magnitudes obtained in a sample of random trigger events can provide the
necessary information in real experiments.

User-defined peak selector classes should be derived from either Functor1<bool,Peak>
(when peak selection can be performed without looking at the event energy flow) or from
AbsPeakSelector (when peak selection can change event-by-event depending on the data).
The FFTJet package itself provides the following implementations:

• AllPeaksPass (header file “AbsPeakSelector.hh”). A trivial peak selector which does
not reject anything. Can be used in Monte Carlo studies whenever detector noise
modeling is not important.

• SimplePeakSelector (header “PeakSelectors.hh”). A simple scale-independent selector
which allows the user to select peaks based on their magnitude and a few other peak
properties.

• ScalePowerPeakSelector (header “PeakSelectors.hh”). Scale-dependent peak selector
which retains the peaks with magnitudes higher than a sp + b. This formula works
well for peaks produced by the Gaussian noise which is uniform across the whole

17

energy discretization grid. The parameters a, p (< 0), and b are specified in the
ScalePowerPeakSelector constructor. They should be derived on the case-by-case basis.

2.3.5 Resolution Scales

The initial set of clustering tree resolution scales is provided by the “initialScales” argument
of the ClusteringSequencer constructor. Two helper classes (declared in the “EquidistantSe-
quence.hh” header) can be used to aid in constructing this set of scales: EquidistantInLin-

earSpace and EquidistantInLogSpace. As their names suggest, the former class can be used to
generate a sequence of numbers with constant difference between two consecutive elements,
and the latter class can be used to generate a sequence with constant ratio. Normally,
EquidistantInLogSpace sequences should be preferred.

The clustering tree construction can also be performed in the adaptive mode, using a small
number of initial resolution scales (at least two, specifying the smallest and the largest scale
values). In this mode, the clustering tree itself decides how to choose the next resolution
scale. To run the ClusteringSequencer in this mode, the “maxAdaptiveScales” parameter
of its constructor has to be positive — it defines the maximum number of adaptive scales
the tree is allowed to have. The parameter “minRatioLog” is used to define the minimal
value of log(si+1/si) for two consecutive scales. At the time of this writing, the heuristic
algorithm used to implement adaptive tree growing has not been thoroughly tested in realistic
simulations, so this mode should be considered experimental.

2.3.6 The Clustering Tree

The clustering tree is normally constructed for each event using the “run” and, optionally,
“insertCompleteEvent” functions of the ClusteringSequencer. The tree consists of levels, with
each level corresponding to a particular resolution scale12. The levels contain collections of
nodes, with one precluster per node. Nodes at consecutive levels are connected to each other
by parent-daughter relationships (the nodes at larger resolution scales are “parents”). In
addition, each node has an associated “radius” which is the distance from the node to its
most far-away descendant.

The FFTJet package defines an interface to a generic clustering tree called AbsCluster-

ingTree. An implementation of this interface is provided as well: the ProximityClusteringTree

class. In this implementation, the parent-daughter relationships between the nodes are es-
tablished using a distance function. A precluster found at some resolution scale si is assigned
a parent from the previous (larger) resolution scale si−1 as follows: the distance between the

12If a SequentialConvolver with η-dependent scales is used to construct the ClusteringSequencer, the resolu-
tion of the pattern recognition stage is no longer constant across the whole η -ϕ space for a given global scale.
As a consequence, a small η-dependent position shift will be introduced for each precluster, and each level of
the clustering tree will encompass a range of effective resolution scales. Depending on the overall jet recon-
struction strategy, this may or may not be a desired effect. If this is not desired, compensating η-dependent
factors can be applied to discretized energy flow before clustering is performed using the “scaleData” method
of the Grid2d class.

18

precluster at the scale si is calculated to all preclusters at the scale si−1. The precluster at
the scale si−1 with the smallest such distance becomes the parent.

The choice of the function which defines the distance between the preclusters is up to the
user of the package. The functor class which implements the distance function calculation
must be derived from the AbsDistanceCalculator interface class. The implementation must at
least ensure that the distance can never be negative, the distance from any precluster to itself
is 0, the distance is symmetric for preclusters found at the same resolution scale, and that
the triangle inequality is satisfied for any three preclusters.13 The package itself provides
one such functor: PeakEtaPhiDistance. This functor implements the distance defined as

d =

√

(

∆ϕ
hϕ

)2

+
(

∆η
hη

)2

, independent from precluster magnitudes and resolution scales used.

The bandwidth values hη and hϕ are chosen so that hη/hϕ = r and hηhϕ = 1. r is the
argument of the PeakEtaPhiDistance constructor (called “etaToPhiBandwidthRatio” in the
class declaration).

Once the parent/daughter relationships are established between preclusters found at
different resolution scales, various precluster characteristics can be analyzed as functions
of the scale parameter. FFTJet calculates14 the following precluster properties:

— The speed with which precluster magnitude changes as the function of scale. This is
an approximate value of d log(m(s))

d log(s)
.

— The speed with which the precluster location drifts in the scale space. If the distance
between precluster is defined by the PeakEtaPhiDistance functor, this becomes |d~r |

d log(s)
,

with ~r = (ϕ
hϕ
, η
hη
).

— Precluster lifetime in the scale space. It is computed as log(smax) − log(smin) where
smax and smin define the range of resolution scales for which the precluster exists as
a distinct feature of the energy distribution. Typically, the lifetime is traced from the
smallest scale in the clustering tree to the scale where the precluster becomes a part
of a larger precluster. If the tree is constructed using a pattern recognition kernel
which generates spurious preclusters, this quantity can be used for trimming those
preclusters.

— Distance to the nearest neighbor precluster at the same resolution scale.

Together with the precluster locations and scales, these quantities are collected in the Peak

class which describes precluster properties in FFTJet. The mapping of the concepts described
above into the Peak access methods is described in the well-commented “Peak.hh” header
file.

13That is, for each resolution scale precluster variables must form a pseudometric space. For different
scales, the commutativity requirement of the distance function can be dropped because the preclusters are
naturally ordered by scale.

14This is the default behavior which can be modified. If you do not want to spend CPU time calculating
these quantities, derive your own clustering tree class from “ProximityClusteringTree” and override the
“postProcess” function.

19

2.3.7 Determining the Event Topology

To determine the event topology, the user must introduce some assumptions about the signal
properties. A clustering tree constructed with a properly selected pattern recognition kernel,
sufficient number of resolution scales, and a correctly implemented distance function is usable
both as a hierarchical clustering dendrogram [8] and as a balltree [7] in the η -ϕ space. The
tree functionality allows for an efficient implementation of a variety of pattern recognition
strategies tuned to locate precluster patterns consistent with the properties of the expected
signal. A few ideas for possible strategies are listed below:

— Choose the single best resolution scale according to some optimization criterion (e.g.,
optimize the fraction of events in which the number of reconstructed jets equals the
number of partons produced at the leading order). Use this scale in every event.

— For each event, choose a scale for which the number of clusters, N , corresponds to the
number of jets expected in the signal. Estimate the “stability” of the configuration, for
example, by calculating log(smax(N)/smin(N)), where smax(N) and smin(N) are, re-
spectively, the maximum and the minimum resolution scales for which the dendrogram
has exactly N clusters.15 This strategy is supported by the clustering tree function
“clusterCountLevels”.

— Use scale-normalized blob detectors [9] to identify jets.

— Identify expected non-trivial clustering patterns in the signal, and find similar patterns
in the clustering tree. For example, boosted resonances, such as W bosons or top
quarks, are expected to produce one wide jet at higher resolution scales which has
a prominent substructure at lower scales.

— Choose the resolution scale separately for each jet, in a manner consistent with the
expected event topology. For example, if the cluster does not split across a range of
scales and its position in the η -ϕ space remains stable, it will be advantageous to use
a pT -dependent scale for energy determination.

The preclusters selected at the pattern recognition stage serve as the input to the jet energy
recombination stage. It will be often useful to provide an initial guess about the jet transverse
momentum using the information available at the precluster level.16 Such a guess can be
based on the dependence of the precluster magnitude on the resolution scale. For example, if
the Gaussian kernel is used for pattern recognition then the precluster magnitude dependence
on the resolution scale, m(s), is the Laplace transform of the transverse energy profile.17

Therefore, a reasonable estimate of the jet transverse energy can be obtained from

ET,0 = A lim
s→∞

s2m(s),

15If you are interested in comparing jet configurations with different values of N then the appropriate
stability function should also depend on N . For example, Nα log(smax(N)/smin(N)) could be a good
choice, with α chosen empirically depending on the process under study (0 < α < 1).

16Assuming that the jet membership function actually depends on the jet transverse momentum via its
scale parameter — see the next section.

17For well-separated, symmetric jets. A proper selection of the η to ϕ bandwidth ratio makes it a good
approximation even in the presence of a strong magnetic field.

20

where A is a proper normalization constant which depends on the binning of the energy
discretization grid. In the current FFTJet implementation, A should be set to nηnϕ

ηmax−ηmin
,

where nη and nϕ are the numbers of η and ϕ bins, respectively, and ηmax − ηmin is the full η
range of the discretization grid. Of course, in the actual code which evaluates the limit one
should exchange the parameter s with the parameter α = sp, p < 0, and then extrapolate
towards α = 0. The details of the extrapolation procedure will determine how good the
initial guess is.18

2.3.8 Avoiding Bifurcation Points

In the multiscale reconstruction paradigm, the simple approach of choosing the single best
resolution scale can be easily improved upon by avoiding situations in which the chosen res-
olution scale is close to a bifurcation point — the scale at which two smaller preclusters form
a bigger one. Near the bifurcation point the locations of the affected preclusters become very
sensitive to small changes in the event energy flow.19 This problem results in an increased
uncertainty of jet energy and direction determination.

The bifurcation points can be avoided by detecting them in the scale space with the
clustering tree, and by using instead modified resolution scales for which the precluster lo-
cation is stable. This approach is realized in the FFTJet package with the help of two
classes: SparseClusteringTree and ClusteringTreeSparsifier. The ClusteringTreeSparsifier trans-
forms an AbsClusteringTree into a SparseClusteringTree by traversing all tree branches and
selecting the nodes which correspond to the slowest drift of the branch η -ϕ position in the
scale space. These nodes are transferred to the SparseClusteringTree together with the nodes
which define the branch structure. Typically, only two nodes per branch are transferred,
resulting in a significantly smaller tree size.

The code of the SparseClusteringTree class also contains a variable resolutuon scale preclus-
ter selection algorithm in which N preclusters are selected from the tree in such a manner
that the s2m(s) quantity for precluster number N − 1 (counting from 0) is the largest pos-
sible when the preclusters are arranged in the order of decreasing s2m(s). The intended
use of this algorithm is automatic detection of subjet structures of boosted heavy particles
when the number of final state tree-level partons is known in advance. The interface to this
algorithm is provided via the “getMagS2OptimalNodes” member function.

2.4 Jet Energy Reconstruction

2.4.1 Jet Membership Functions

Once the number of jets and the precluster positions are determined, we need a way to
distribute the observed energy between these proto-jets. In order to perform this distribution,

18A good extrapolation procedure should also include an additional correction factor due to non-constant
response of the ET,0 quantity as a function of jet pT .

19Bifurcation points are present in every jet reconstruction algorithm, including those which are normally
considered to be infrared and collinear safe. Most algorithms do not have the capability to detect these
points.

21

the FFTJet package utilizes the “membership function” concept.20 With each precluster
located at angular coordinates (ηi, ϕi) we associate the jet membership function Mi(η −
ηi, ϕ − ϕi, ε, si). Here, ε is the magnitude of the transverse energy (or momentum) located
at angular coordinates (η, ϕ), and si is the jet recombination scale which may or may not
coincide with the precluster resolution scale. We also define the noise/unclustered energy
membership function U(η, ϕ, ε) which has no characteristic scale.

Two recombination modes are supported by the FFTJet code: “crisp” and “fuzzy”. In
the “crisp” mode, each transverse energy deposit is assigned to the jet (or background) whose
membership function value evaluated for that deposit is the highest. In the “fuzzy” mode,
each energy deposit is distributed among all jets and the unclustered energy with weights
calculated for jet number i as

wi =
Mi(η − ηi, ϕ− ϕi, ε, si)

U(η, ϕ, ε) +
∑

k Mk(η − ηk, ϕ− ϕk, ε, sk)

and for the noise/unclustered energy as

wu =
U(η, ϕ, ε)

U(η, ϕ, ε) +
∑

k Mk(η − ηk, ϕ− ϕk, ε, sk)
.

The weights calculated in this manner are normalized by

wu +
∑

k

wk = 1.

The choice of the jet membership function and the recombination mode is up to the
user of the package. It is expected that the most precise determination of jet energies
will be achieved by using detailed jet shape models which will be called “detector-level jet
fragmentation functions”. Such jet models are defined by

Mi(η, ϕ, ε, s) =

〈

∂3N(pT)

∂η ∂ϕ ∂ε

〉

where N is the number of energy discretization grid cells into which a jet deposits its en-
ergy, pT is the actual jet pT , the jet direction is shifted to (ηi, ϕi) = (0, 0), and angular
brackets stand for averaging over a large number of jets. It is natural in this case to set
the recombination scale s to 1/pT . The functions Mi(η, ϕ, ε, s) defined in this manner are
normalized by

∫

Mi(η, ϕ, ε, s)dηdϕdε = N(pT)

and
∫

εMi(η, ϕ, ε, s)dηdϕdε = ET (or pT).

20The membership function normalization employed here differs from the fuzzy sets theory convention.

22

It is unlikely that in practice one will be able to represent these jet models by simple
parametrized functional expressions. FFTJet provides a solution to this problem in the
form of multidimensional interpolation tables. Construction and serialization of such tables
is discussed in Section 3.2.

The noise/unclustered energy membership function should be defined in a compatible
manner. For example, if the noise RMS is σ(η, ϕ) GeV for the grid cell located at (η, ϕ),
noise in different cells is not correlated, and the noise can be assumed to follow the Gaussian
distribution with zero mean then the noise membership function is

U(η, ϕ, ε) =
1

∆η∆ϕ
√
2πσ(η, ϕ)

e
− ε2

2σ(η,ϕ)2 ,

where ∆η∆ϕ is the area of one grid cell in the η -ϕ space. This function (with added constant
term) is implemented in FFTJet with the GaussianNoiseMembershipFcn class.

Within the FFTJet framework it is possible to associate different jet membership func-
tions with different preclusters, so the user can take advantage of even more detailed jet
models which can depend, for example, on the assumed jet flavor. On the other hand,
simpler models will be less susceptible to systematic errors and model misspecifications.
An interesting example of a simpler model which is still expected to result in a very good
jet energy reconstruction precision is the jet energy profile in the η -ϕ space. This profile
is obtained from the detector-level fragmentation function just described by integrating it
over ε with εdε factor. In the case of noise membership function, it is important to use the
actual energy cutoff employed for data sparsification as the lower limit of such integration
(or zero if there is no such cutoff — negative energies should not be used). Arbitrary user-
defined jet models can be introduced into the FFTJet framework by deriving them from the
AbsMembershipFunction abstract class.

If the jet membership function depends on the jet pT (via the recombination scale param-
eter) then the precision of jet energy determination is expected to improve when the energy
recombination stage is applied iteratively until convergence. The example program “multi-
ScaleExample” illustrates this approach. In practice, the advantage of more precise energy
determination will have to be weighted against the disadvantage of increased processing time.

In all modern HEP experiments, the real purpose of the jet energy recombination stage
is building a set of predictor quantities which are later used to estimate the 4-momentum
of the jet by means of the procedure usually termed “jet energy correction”. The iterative
jet energy determination method described above should include the correction step which
translates the reconstructed jet ET (or pT) into actual jet pT and, subsequently, into the
recombination scale parameter used by next iteration.

The recombination behavior of the cone algorithm21 can be reproduced in the FFTJet
framework by using crisp clustering with the following jet membership function:

C(η, ϕ) =

{

1− (ϕ2 + η2)/R2, ϕ2 + η2 < R2

0, ϕ2 + η2 ≥ R2

21The pattern recognition performance of the cone algorithm can be, in principle, reproduced exactly
within FFTJet by using Epanechnikov kernel at the pattern recognition stage. Of course, in practice you
will want to make better pattern recognition kernel choices.

23

Note that this function is not unique: in the crisp mode identical jets will be generated
by any membership function which depends only on r =

√

ϕ2 + η2 and which decreases
monotonically from a positive value when r = 0 to zero when r = R. One can use, for
example, the Linear2d kernel which has the desired properties in place of C(η, ϕ). For use
with the cone algorithm, it is sufficient to specify U(η, ϕ, ε) = ǫ, where ǫ is a very small
positive constant.

The FFTJet framework allows the user to easily improve upon the jet energy resolution
performance of the cone algorithm in two ways: by introducing different bandwidth values
for η and ϕ variables, and by choosing the R parameter separately for each jet, in a manner
consistent with the event topology discovered during the pattern recognition stage. It may
also be interesting to use the cone algorithm iteratively, where the cone radius for the next
iteration depends on the jet pT determined during the previous iteration.22 In this case it
would be better to use the actual rather than the observed pT which means that the energy
correction step should be a part of the iterations. Of course, the cone radius should not get
so small that the discretization grid binning effects become important and so large that it
starts picking up too much noise.

It is not clear whether the behavior of the kT and other sequential recombination algo-
rithm can be meaningfully reproduced using FFTJet techniques.23 However, a wide variety
of other algorithms can be devised by creatively varying the jet and the unclustered energy
membership functions.

2.4.2 Energy Recombination Schemes

Within FFTJet, the energy depositions can be combined to form jet predictors in three
different ways:

1. By using the weighted 4-vector recombination scheme:

P pred,i =
∑

η, ϕ

wi(η, ϕ)P (η, ϕ),

where P (η, ϕ) is the 4-vector associated with the grid cell centered at (η, ϕ). For “crisp”
clustering all weights wi(η, ϕ) for jet number i are either 0 or 1. The manner in which
4-vectors are constructed out of grid cell energies is up to the user of the package. For
example, if the grid is built using ET and pseudorapidity, it makes sense to construct
the 4-vector using

(px, py, pz) = ET (cosϕ, sinϕ, sinh η), E =
√

p2x + p2y + p2z.

22For example, one can use R ∝ pαT , α < 0. The optimal choice of α will depend on the balance of
uncertainties due to noise, calorimeter energy resolution, and out-of-cone leakage.

23This is actually an interesting question which deserves further study — a separate analysis of pattern
recognition and recombination properties of an algorithm brings about an important understanding of the
algorithm performance. It is easy to write the kT algorithm membership function, but it is not clear how
to reformulate the determination of kT jet directions as a filtering/pattern recognition problem. Unfortu-
nately, the coupling between pattern recognition and energy recombination is much tighter for sequential
recombination algorithms, and using one without the other does not make much sense.

24

In this scheme, the jet predictor is a 4-vector, and the “jet energy correction” is usually
reduced to multiplying P pred by a scalar factor which itself is a function of P pred.

2. By calculating the weighted ET (or pT) centroid (this is a weighted version of the
Original Snowmass scheme):

ET ,pred,i =
∑

η, ϕ

wi(η, ϕ)ET (η, ϕ), η pred,i =

∑

η, ϕ wi(η, ϕ) η ET (η, ϕ)

ET ,pred,i

,

ϕ pred,i = ϕ precluster,i +

∑

η, ϕ wi(η, ϕ)∆ϕiET (η, ϕ)

ET ,pred,i
,

where ∆ϕi is defined as ϕ−ϕ precluster,i moved to the interval from −π to π. In this case
the predictor is, essentially, a 3-vector, and “jet energy correction” is usually performed
for a 3-vector. The reconstructed jet is then assigned a mass based on the particular
flavor assumption used.

3. By using just

ET ,pred,i =
∑

η, ϕ

wi(η, ϕ)ET (η, ϕ), η pred,i = η precluster,i, ϕ pred,i = ϕ precluster,i

The 4-vector recombination scheme is used almost exclusively in the current practice, but
our preliminary studies indicate that schemes 2 and 3 can outperform it if a strong magnetic
field is present in the detector.

2.4.3 Jet Reconstruction API

There are two parallel families of classes in the FFTJet framework which implement energy
recombination algorithms. One family is designed to process the data represented by a grid in
the η -ϕ space (just like in the pattern recognition stage), and the other works with collections
of 4-vectors. The first family can be conveniently used with energy flow patterns observed
in the calorimeters, and the second can be applied in situations where energy deposits do
not possess a granular structure (e.g., reconstructed by particle flow or similar techniques).
The energy recombination classes and their functionality are summarized in Table 1.

In the “grid” family, there are three main recombination algorithm classes: KernelRecom-

binationAlg, EtCentroidRecombinationAlg, and EtSumRecombinationAlg. These classes corre-
spond to the recombination schemes 1, 2, and 3, respectively, as described in the previous
section. In addition, there are classes FasterKernelRecombinationAlg, FasterEtCentroidRecom-

binationAlg, and FasterEtSumRecombinationAlg which can be used with membership functions
which do not explicitly depend on ε. These classes memoize membership function values in
the internal lookup tables which results in increased performance for complex functions.
The disadvantage of “faster” classes is additional η -ϕ binning uncertainty introduced due

25

Table 1: Jet energy recombination API classes.

Functionality Grid family class name Vector family class name

Abstract base class AbsRecombinationAlg AbsVectorRecombinationAlg

Weighted 4-vector KernelRecombinationAlg KernelVectorRecombinationAlg

recombination scheme FasterKernelRecombinationAlg

Weighted Original EtCentroidRecombinationAlg EtCentroidVectorRecombinationAlg

Snowmass scheme FasterEtCentroidRecombinationAlg

Jet direction is taken EtSumRecombinationAlg EtSumVectorRecombinationAlg

from the precluster FasterEtSumRecombinationAlg

Factory class DefaultRecombinationAlgFactory DefaultVectorRecombinationAlgFactory

to memoization on a grid, so these classes should only be employed when evaluation of the
membership function indeed dominates the speed of the algorithm.24

All these classes implement the interface declared in the AbsRecombinationAlg abstract
class. The constructor syntax is also identical, and the framework provides a factory class
DefaultRecombinationAlgFactory (header file “RecombinationAlgFactory.hh”) which can be
used for dynamic switching between these algorithms. If the user wants to use another
recombination algorithm with FFTJet, it should also be implemented in a class derived from
AbsRecombinationAlg.

The most important part of the KernelRecombinationAlg class declaration in the “Kernel-
RecombinationAlg.hh” header file looks like this (other classes are similar):

template

<

typename Real,

typename VectorLike,

typename BgData,

typename VBuilder

>

class KernelRecombinationAlg :

public AbsRecombinationAlg<Real,VectorLike,BgData>

{

public:

KernelRecombinationAlg(const ScaleSpaceKernel* kernel,

const Functor2<double,double,BgData>* bgWeight,

double unlikelyBgWeight,

double dataCutoff,

24Also, “faster” classes cannot handle the case when different membership functions are associated with
different preclusters.

26

bool winnerTakesAll,

bool buildCorrelationMatrix,

bool buildClusterMask,

unsigned etaBinMin=0,

unsigned etaBinMax=UINT_MAX);

virtual int run(const std::vector<Peak>& peaks,

const Grid2d<Real>& eventData,

const BgData* bgData, unsigned nBgEta, unsigned nBgPhi,

std::vector<RecombinedJet<VectorLike> >* outputJets,

VectorLike* unclustered, double* unused);

};

A detailed description of the “run” function arguments is provided in the comments included
in the “AbsRecombinationAlg.hh” header file. The KernelRecombinationAlg constructor ar-
guments are sufficiently well documented in the “KernelRecombinationAlg.hh” header. The
template arguments are as follows:

— “Real” is the floating point type compatible with data representation and FFT engine
used (as explained in section 2.1).

— “VectorLike” is the 4-vector class.

— “BgData” is the type used to represent background/noise information necessary to
calculate the value of the unclustered energy membership function. For example, in
case the noise is described by a simple Gaussian distribution with mean 0, it is sufficient
to use a single precision float as “BgData” to describe the RMS (which, in general,
may depend on the cell location). More complex structures may be utilized to describe
pile-up, underlying event, etc.

— “VBuilder” is the functor class which builds 4-vectors out of η, ϕ, and data values in
the energy discretization grid. Must implement

VectorLike operator()(double etLikeVariable, double eta, double phi) const

This operator should be compatible with the convention adopted for η and grid data
during the energy discretization step (Section 2.2). Examples of such functors can be
found in the “VBuilders.hh” header in the “examples” directory.

The interface provided by the “vector” family of classes is similar. Here, for example, is
a part of the KernelVectorRecombinationAlg declaration:

template <class VectorLike, typename BgData, class VBuilder>

class KernelVectorRecombinationAlg :

public AbsVectorRecombinationAlg<VectorLike, BgData>

{

public:

typedef double (VectorLike::* VectorLikeMemberFunction)() const;

27

KernelVectorRecombinationAlg(

const ScaleSpaceKernel* kernel,

VectorLikeMemberFunction etFcn,

VectorLikeMemberFunction etaFcn,

VectorLikeMemberFunction phiFcn,

const Functor2<double,double,BgData>* bgWeight,

double unlikelyBgWeight,

bool winnerTakesAll,

bool buildCorrelationMatrix,

bool buildClusterMask);

virtual int run(const std::vector<Peak>& peaks,

const std::vector<VectorLike>& eventData,

const BgData* bgData, unsigned bgDataLength,

std::vector<RecombinedJet<VectorLike> >* jets,

VectorLike* unclustered, double* unused);

};

It is assumed that the template argument 4-vector class “VectorLike” has member functions
(taking no arguments and returning a double) which will allow to determine ET (or pT), η,
and ϕ of the energy deposit. The pointers to these member functions must be provided as
constructor arguments etFcn, etaFcn, and phiFcn, respectively.

The jet 4-momentum information is contained in the RecombinedJet class. A vector of Re-
combinedJet objects is produced by the “run” member of each recombination algorithm class.
In addition, the RecombinedJet object contains the precluster (with the actual recombination
scale used) and several other quantities which characterize the jet energy distribution:

— The weighted number of the grid cells contributing to the jet. If the reconstruction
mode is “crisp” and the “dataCutoff” parameter in the algorithm constructor is suffi-
ciently low, this quantity corresponds to the jet area.

— The weighted sum of the discretization grid energy values.

— The η and φ centroids weighted by the discretization grid energy variable and by the
membership function weight.

— The η and φ width of the jet with respect to the above centroid. These quantities
can be useful in conjunction with jet membership functions which have a well-defined
extent in the η -ϕ space. To calculate the jet width with respect to the jet direction,
add in quadrature the angular distance from the jet direction to the centroid.

— The “fuzziness” of the jet. This quantity characterizes how uncertain is the jet en-
ergy determination due to the ambiguity in cell-to-jet assignments. In the “fuzzy”

28

reconstruction mode this quantity is evaluated as

σ fuzzy,i =

√

∑

η, ϕ wi(η, ϕ)(1− wi(η, ϕ))ET (η, ϕ)2

∑

η, ϕwi(η, ϕ)ET (η, ϕ)

Assuming a finely segmented calorimeter (only one particle can deposit its energy in
a cell) and assuming that the jet membership function can be treated as the probability
density25 for the cell variables (ET , η, ϕ), this quantity becomes, indeed, the relative ET

uncertainty due to the cell-to-jet assignment ambiguity. Within these approximations,
the energy of each jet is distributed according to the generalized binomial model. The
weight wi(η, ϕ) becomes the probability for a cell at (η, ϕ) to belong to jet i, the variance
of the energy contribution from this cell to the jet is wi(η, ϕ)(1 − wi(η, ϕ))ET (η, ϕ)

2,
and the sum under the square root in the numerator just adds these variances up.

In the “crisp” mode jet fuzziness is evaluated as

σ crisp,i =

√

∑

η, ϕ∈jet(1− wi(η, ϕ))ET (η, ϕ)2

∑

η, ϕ∈jetET (η, ϕ)

where the weight wi(η, ϕ) is calculated according to the “fuzzy” mode rules. This
quantity does not have a straightforward interpretation, but, just as σ fuzzy, it is dimen-
sionless, and becomes close to 0 for well-separated jets.

The mapping of this information into the RecombinedJet members is described in the “Re-
combinedJet.hh” header file.

3 Supporting Functionality

3.1 Visualizing Clustering Trees

The FFTJet package allows the user to visualize the clustering trees using the OpenDX
scientific visualization system [10]. In this system, each node in the clustering tree is rep-
resented with a glyph. The glyphs are positioned in the 3-dimensional Euclidean space of
(η, ϕ, log(s)), where s is the resolution scale, and ϕ is sliced at ϕ = 0 = 2π. A virtual
trackball technique is used to rotate the image in order to view different projections of the
3d space on the computer screen. The parent-daughter relationships are reflected by lines
connecting the glyphs. These lines penetrate freely the virtual wall at ϕ = 0 = 2π.

OpenDX allows the user to visualize precluster variables with such glyph properties as
location, type, orientation, size, and color. Besides the glyph location which is obviously used
to reflect the precluster location, it appears that glyph size and color provide the most visually

25Of course, this is just an approximation, even when detailed detector-level fragmentation functions are
used as jet membership functions. It breaks down in the same manner as the assumption that the single-
particle jet fragmentation function can describe the distribution of all particle momenta within a jet.

29

pleasing ways to explore the precluster data. The mapping of the precluster properties onto
glyph size and color is defined by the user with the help of two functor classes which take
a Peak object as an argument and return one of its properties as a double. The clustering
trees can be saved into files readable by OpenDX using the OpenDXPeakTree class which
translates the tree nodes and parent-daughter relationships between them into objects which
can be used by OpenDX for drawing the image.26 An example of OpenDXPeakTree usage is
provided by the “clusteringTreeVis” program in the “examples” subdirectory. An OpenDX
view of such a tree is shown in Figure 3.

Two OpenDX programs (or “nets”) are provided with the FFTJet package in the “opendx”
subdirectory: view_one_tree.net and view_tree_sequence.net. The first one can be used
to visualize a single clustering tree saved in a proper format. The second one is intended for
browsing through many trees which correspond to different events, one file per event. The
instructions for using these programs can be found in the “README” file in the “opendx”
subdirectory.

If the user wants to view the clustering trees using other types of visualization software (or
to just dump the information to disk in a human-readable form), we suggest implementing
the visualization system interface by deriving it from the AbsTreeFormatter abstract class.
Use of AbsTreeFormatter will result in a uniform interface for saving the tree data independent
from a particular visualization system used.

3.2 Persistent Interpolation Tables

The FFTJet package provides facilities for building detailed jet models using multidimen-
sional interpolation tables. The jet energy profiles in the η -ϕ space can be represented using
3d tables (for example, with equidistant grids in the η, ϕ, and log(s) ≡ log(1/pT) variables),
and detector-level fragmentation function can be represented using 4d tables. Normally,
construction of such tables should proceed with the help of a convenient histogramming and
data visualization package.

In order to build a detector-level fragmentation function, one has to simulate the detector
response to a large number of jets. It is important to use the same energy discretization
grid binning as the one which will be later used for jet reconstruction because binning effects
become important for the narrow neutral “core” of the jet which deposits most of its energy in
just a few calorimeter towers. A typical HEP calorimeter has a few thousands of towers, and
12 to 16 bit linearized ADC dynamic range is not uncommon. This means that a complete,
uncompressed fragmentation function implemented using a rectangular equidistant grid in
the (η, ϕ, ε, log(s)) variables could require, roughly, from 20 to 1000 MBytes of memory per
recombination scale. This clearly becomes a problem in case one wants to use a reasonably
large number of scales.

Fortunately, the detector-level fragmentation function becomes very small very quickly
away from the jet core. Only particles with small energies can be radiated at large angles,
and the same is true for particle deviations due to the presence of magnetic field. This,

26In particular, into the “fields” and “connections” objects utilized by the OpenDX data model.

30

Figure 3: An example clustering tree image generated by OpenDX for a four-jet event. Here,
the quantity s2m(s), where m(s) is the precluster magnitude, is mapped into the glyph size
and the scale-normalized Hessian blob detector is mapped into the glyph color. The ϕ
variable wraps around so that 0 and 2π correspond to the same location. This is why you
see a bunch of connections apparently ending at ϕ = 0: they actually “tunnel” from the
right side of the image to the left and continue towards the cluster near ϕ = 2π.

naturally, leads to the detector fragmentation function representation in which, for each
value of (∆η,∆ϕ) from the jet direction, only the occupancy of the first few energy bins has
to be stored, and the occupancy for higher ε values is 0. This representation is realized in
the FFTJet package by the InterpolatedMembershipFcn class.

The user is supposed to construct an InterpolatedMembershipFcn object incrementally, by
sequentially feeding it the data for each recombination scale in the full equidistant rectangular
grid format (3d histograms). The object will automatically determine the energy range to use
in the compressed representation for each (η, ϕ) bin. Once the InterpolatedMembershipFcn is

31

fully constructed, it can be saved to disk in a binary format using the “write” function. The
memory saving factor which InterpolatedMembershipFcn achieves in comparison with a “full”
4d representation is typically a few hundred.

Lower-dimensional interpolated functions can be stored in the binary format as well
(without compression): InterpolatedKernel3d can be used to model arbitrary scale-dependent
jet energy profiles, and InterpolatedKernel can be used to represent functions whose width in
the η -ϕ space changes in proportion to the scale but the shape (skewness, kurtosis) remains
constant.

In all cases, interpolations are performed linearly in the η, ϕ, and ε variables. Interpola-
tion in the scale variable is linear either in s or in log(s). Interpolation in a q-dimensional
hyperrectangular grid is performed using the 2q points at the vertices of the hyperrectangular
cell inside which the point of interest is located. If the cell is shifted and scaled in such a way
that it becomes a hypercube with diagonal vertices at (0, 0, ..., 0) and (1, 1, ..., 1) then the
interpolation formula can be compactly written as

f(x1, x2, ..., xq) =
∑

m1=0,1
m2=0,1

...
mq=0,1

f(m1, m2, ..., mq)

q
∏

k=1

xmk
k (1− xk)

1−mk

At present time, the author of the FFTJet package has no access to a big-endian com-
puter, so a platform-independent implementation of the binary I/O interface for the interpo-
lated functions was not attempted. All binary data is currently stored in the native format.
Note that the binary read/write operations are not performed by various object serialization
methods directly. Instead, all of them proceed through another layer of functions defined in
the “binaryIO.hh” header.27 If necessary, it will be easy to provide a platform-independent
binary I/O interface by properly adapting these functions.

3.3 Jet Energy Correction

Inversion of the jet energy response curve is a common procedure encountered in jet recon-
struction, often termed “jet energy correction”. Typically, the response curve is defined as
the mean (peak, median, etc) ratio between the reconstructed jet predictor quantity (jet pT
or ET) and the actual jet (or parton) pT known from Monte Carlo. This ratio is initially con-
structed as a function of the actual jet pT and, possibly, some other parameters (in practice,
η of the reconstructed jet is often used as the second parameter).

The simplest reasonable estimator of the actual jet pT can be obtained from the recon-
structed jet information by applying the inverse jet energy response function to the measured
predictor quantity.28 FFTJet provides several classes and functions which facilitate the task

27These functions look somewhat like a templated version of the XDR library and might actually use XDR
in the future.

28This estimator is neither unbiased nor efficient. Estimation of the actual jet pT given the measured
predictor is a stochastic inverse problem complicated by censoring which occurs due to pattern recognition
inefficiency at low pT values. Proper treatment of this problem is beyond the scope of this note.

32

of inverting the response curve:

• invertJetResponse (header file “invertJetResponse.hh”). This function solves the equa-
tion xf(x) = y numerically for unknown x under the following assumptions:

a) f(x) > 0 for every x,

b) y ≥ 0,

c) xf(x) is monotonously increasing, and

d) limx→0(xf(x)) = 0.

• invertJetResponse2d (header file “invertJetResponse.hh”). This function solves the
same equation for a function which, in addition to x, depends on another parame-
ter which is assumed to be constant during equation solving.

• JetMagnitudeMapper (header file “JetMagnitudeMapper.hh”). This class builds the
inverse jet response curve numerically assuming that the response function depends
only on one variable (e.g., jet pT).

• JetMagnitudeMapper2d (header file “JetMagnitudeMapper2d.hh”). This class builds
the inverse jet response curve numerically assuming that the response function depends
on two variables (e.g., jet pT and the recombination scale at which jet energy was
reconstructed).

In addition to the classes listed above, the classes IdleJetCorrector and InvalidJetCorrector

(header file “AbsJetCorrector.hh”) can sometimes be useful. The IdleJetCorrector class does
not perform any correction, so it can be substituted instead of some other corrector when the
jet response curve is constructed (assuming that the application code performs jet corrections
via the interface provide by the AbsJetCorrector abstract base class). InvalidJetCorrector can
be used as a convenient and safe placeholder during code development.

The classes which represent inverse jet response curves are not persistent. However, their
construction from the “direct” response curves usually takes a negligible amount of CPU
time since it has to be performed only once. Arbitrary “direct” curves can be stored in
binary format using serializable classes LinearInterpolator1d and LinearInterpolator2d.

33

A FFTJet Kernel Functions

A.1 2-d Kernels

Most 2-d kernels provided by the FFTJet package can be made axially symmetric by a linear
transformation in the η -ϕ space. All such kernels have the following functional form:

K(η, ϕ, s) =
1

hηhϕ
G(r2), where r2 =

(

η

hη

)2

+

(

ϕ

hϕ

)2

, hη = bηs
p, hϕ = bϕs

p,

bη and bϕ are some positive constants and p is an integer (-1, 0, and 1 are the most mean-
ingful values for the parameter p). G(r2) functions are listed in Table 2 together with their
corresponding class names and header files. If you want to use an axially symmetric kernel
not provided by the package, it may be useful to derive your kernel class from AbsSymmet-

ricKernel (see files “Kernels.hh” and “Kernels.cc” for examples of such classes). Then your
kernel will automatically handle bandwidth calculations in the manner just described.

Table 2: Axially symmetric 2-d kernels. The normalization constant N , when not given
explicitly, is calculated so that

∫∞
0

G(r2)2πrdr = 1.

G(r2) Class Name FFTJet Header File

N(1− r2)n, r2 < 1
0, r2 ≥ 1

SymmetricBeta Kernels.hh

3
π
(1−

√
r2), r2 < 1

0, r2 ≥ 1
Linear2d Kernels.hh

1
2π
e−r2/2 Gauss2d Kernels.hh

Ne−(r2/2)α/2
SubGauss Kernels.hh

Ne−r2/2,
√
r2 ≤ a

Nea (a/2−
√
r2),

√
r2 > a

Huber2d Kernels.hh

N
1+r2n

InvPower2d Kernels.hh

Arbitrary (interpolated
from a table of values), r2 < 1

0, r2 ≥ 1
ProfileKernel ProfileKernel.hh

Arbitrary (interpolated
from a table of function

logarithm values),
√
r2 ≤ a

G(a2)e−k(
√
r2−a),

√
r2 > a

LogProfileKernel LogProfileKernel.hh

In addition to the kernels listed in Table 2, the following 2-d kernel classes are provided:

• InterpolatedKernel (header “InterpolatedKernel.hh”). This class implements an arbi-
trary kernel function without axial symmetry whose width in the η -ϕ space changes

34

with the scale in a way specified below and whose shape (skewness, kurtosis, etc)
remains constant. Such a kernel is described by the following functional form:

K(η, ϕ, s) =
1

hηhϕ

H(
η

hη

,
ϕ

hϕ

), hη = bηs
p, hϕ = bϕs

p.

bη and bϕ are some positive constants and p is an integer. H(x, y) values are tabulated
on a 2d equidistant rectangular grid. In between, the function values are interpolated
linearly. If you would like to implement your own kernel which handles bandwidth
scaling in the same manner, derive your class from AbsScalableKernel.

• InterpolatedKernel3d (header “InterpolatedKernel3d.hh”). An arbitrary kernel function
whose values are linearly interpolated from points on a 3d equidistant rectangular grid.

• DiscreteGauss2d (header “DiscreteGauss2d.hh”). Gaussian kernel corrected for the en-
ergy flow discretization effects. This kernel is, essentially, the Green’s function for the
two-dimensional anisotropic diffusion equation with the discretized Laplacian operator.
Unlike the standard Gaussian kernel which no longer conforms to the scale space ax-
ioms when its width becomes comparable to the grid bin size, DiscreteGauss2d remains
compliant, and gracefully converges to the discrete delta function at the limit of zero
scale. This kernel is defined by its Fourier transform representation:

Re(F (u, v)) = exp
(

σ2
η

(∆η)2
(cos(u)− 1) +

σ2
ϕ

(∆ϕ)2
(cos(v)− 1)

)

,

Im(F (u, v)) = 0,

where

u = 2πk
Nη

, k ∈ {0, 1, ..., Nη − 1} is the η frequency.

v = 2πm
Nϕ

, m ∈ {0, 1, ..., Nϕ − 1} is the φ frequency.

∆η = 2π
Nη

is the effective width of the grid cells in η (scaled so that the full η range of

the grid is 2π).

∆ϕ = 2π
Nϕ

is the width of the grid cells in ϕ.

ση is the effective kernel width parameter in η. In the limit of small cell sizes and when
ση ≪ 2π, it corresponds to the standard deviation of the Gaussian kernel.

σϕ is the kernel width parameter in ϕ.

The rationale for this type of kernel can be found in Ref. [11].

• DeltaFunctionKernel (header “Kernels.hh”). Represents 2-d delta function a δ(η, ϕ).
The method “double operator()(double eta, double phi, double s)” of the “DeltaFunc-
tionKernel” class returns 0 when either “eta” or “phi” argument is not equal to 0,
and results in a run-time error when both “eta” and “phi” are 0. Thus, using “oper-
ator()” of this and other kernels which involve delta functions is not recommended in
the application code. Instead, use the “rectangleAverage” method which behaves as
expected.

35

• PythiaKernel 30 100 v0 (header “PythiaKernel 30 100 v0.hh”). Angular energy profile
of the Pythia light quark single jet gun in the absence of magnetic field. Accurate for
jets with transverse momenta pT > 30 GeV/c or so. For such jets, the width of the
angular profile scales in the inverse proportion to jet pT . The scale parameter for this
kernel should be set to 1/(jet pT).

• RealFrequencyKernel (header “RealFrequencyKernel.hh”). Can be used to represent
kernels whose Fourier transforms are pure real. It takes any kernel in the η -ϕ space
and substitutes ωη, ωϕ in place of η and ϕ in order to calculate the real part of the
transform. The imaginary part is set to 0.

• PhiGauss (header “PhiKernels.hh”). A product of the delta function in η and the

Gaussian density in ϕ: K(η, ϕ, s) = δ(η)√
2πhϕ

e
− ϕ2

2h2ϕ , hϕ = bφs
p, where bϕ is some positive

constant and p is an integer.

• PhiProfileKernel (header “PhiKernels.hh”). A product of the delta function in η and

an arbitrary even function of ϕ: K(η, ϕ, s) = δ(η)
hϕ

P (ϕ/hϕ), hϕ = bφs
p, where bϕ is some

positive constant and p is an integer. The function P (ϕ) is represented by a table of
its values on the equidistant grid which covers the interval [0, π/2]. It is assumed that
P (ϕ) = 0 when ϕ ≥ π/2, and that P (−ϕ) = P (ϕ).

• CompositeKernel (header “CompositeKernel.hh”). Can be used to calculate a linear
combination of kernels:

∑

i aiKi(η, ϕ, s), where ai are fixed constants.

• MagneticSmearingKernel (header “MagneticSmearingKernel.hh”). This kernel can be
used to model the angular smearing of a jet due to the presence of a magnetic field in
the detector. It is assumed that the magnetic field is directed along the beam axis.

A.2 1-d Kernels

The 1-d kernels provided by the FFTJet package are intended for use with the SequentialCon-
volver and FrequencySequentialConvolver classes. The following functions are implemented:

• Gauss1d (header “Kernels1d.hh”). This kernel looks like

K(x, s) =
1

bsp
G
(x

bsp

)

, G(y) =
1√
2π

e−
y2

2

where b is some positive constants and p is an integer. The scaling behavior which
relates K(x, s) and G(y) is built into the AbsScalableKernel1d base class from which
Gauss1d is derived. If you need to implement your own 1-d kernel with similar scaling
behavior, derive it from AbsScalableKernel1d.

36

• SymmetricBeta1d (header “Kernels1d.hh”). This class is also derived from AbsScal-

ableKernel1d using

G(y) =

{

N(1− y2)n, y2 < 1
0, y2 ≥ 1

where the normalization constant N is calculated so that
∫ 1

−1
G(y)dy = 1.

• DeltaFunction1d (header “Kernels1d.hh”). This kernel represents the 1-d delta function
a δ(x). Evaluation of this function at x = 0 will result in a run-time error. Use
“intervalAverage” method instead.

• DiscreteGauss1d (header “DiscreteGauss1d.hh”). This is a 1-d version of Discrete-

Gauss2d. The kernel is defined by its Fourier transform:

Re(F (u)) = exp
(

σ2

∆2 (cos(u)− 1)
)

,

Im(F (u)) = 0,

where

u = 2πk
N

, k ∈ {0, 1, ..., N − 1} is the Fourier frequency.

∆ = 2π
N

is the effective width of the grid cells.

σ is the effective kernel width parameter.

• RealFrequencyKernel1d (header “RealFrequencyKernel1d.hh”). Can be used to repre-
sent kernels whose Fourier transforms are pure real and can be calculated with any
other 1-d kernel. The imaginary part of the transform is set to 0.

Classes DefaultKernel1dFactory and DefaultKernel2dFactory (header files “Kernel1dFactory.hh”
and “Kernel2dFactory.hh”, respectively) can be utilized to simplify creation of kernel objects
in various interpretive language data analysis environments.

37

References

[1] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering”, IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol 17, pp. 790-799, 1995.

[2] M.C. Minnotte and D.W. Scott, “The Mode Tree: a Tool for Visualization of Nonpara-
metric Density Features”, J. Comp. Graph. Statist., Vol 2, pp. 51-68, 1993.

[3] I. Volobouev, “Density-Based Clustering and Jet Reconstruction”, presentation at the
MC4LHC Workshop, CERN, July 2006.

[4] D.W. Scott, “Multivariate Density Estimation: Theory, Practice, and Visualization”,
Wiley, 1992.

[5] http://www.cern.ch/clhep

[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, “Numerical Recipes:
the Art of Scientific Computing”, 3rd ed., Cambridge University Press, 2007.

[7] S. M. Omohundro, “Five Balltree Construction Algorithms”, ICSI Technical Report
TR-89-063, 1989.

[8] http://en.wikipedia.org/wiki/Dendrogram

[9] http://en.wikipedia.org/wiki/Blob detection

The utility of the standard scale-normalized Laplacian and Hessian-based blob detectors
in the Gaussian scale space is not clear and deserves further study. The main problem
here is that jets do not have a well-defined radial extent in the η -ϕ space. The average
angular jet energy profile, E(r), where r =

√

η2 + ϕ2, behaves approximately as r−3

for large values of r (according to Pythia). If such a behavior is extrapolated to infinity
then the second moment integral

∫

r2E(r)2πrdr diverges. (Here, Ejet =
∫

E(r)2πrdr.)

[10] http://www.opendx.org/

[11] T. Lindeberg, “Scale-Space for Discrete Signals”, IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol 12, pp. 234-254, 1990.

38

Functions and Classes

AbsClusteringTree, 11, 18, 21
AbsConvolverBase, 11, 12
AbsDistanceCalculator, 19
AbsFFTEngine, 6, 7, 12, 14
AbsFrequencyKernel, 12
AbsFrequencyKernel1d, 14
AbsJetCorrector, 33
AbsKernel1d, 14
AbsKernel2d, 12
AbsMembershipFunction, 23
AbsPeakSelector, 17
AbsRecombinationAlg, 26
AbsScalableKernel, 35
AbsScalableKernel1d, 36, 37
AbsSymmetricKernel, 34
AbsTreeFormatter, 30
AbsVectorRecombinationAlg, 26
AllPeaksPass, 17

ClusteringSequencer, 10, 18
ClusteringTreeSparsifier, 21
CompositeKernel, 36
ConstScaleReconstruction, 15
CUFFTFloatEngine, 7

DefaultKernel1dFactory, 37
DefaultKernel2dFactory, 37
DefaultRecombinationAlgFactory, 26
DefaultVectorRecombinationAlgFactory, 26
DeltaFunction1d, 37
DeltaFunctionKernel, 35
DiscreteGauss1d, 37
DiscreteGauss2d, 16, 35, 37

EquidistantInLinearSpace, 18
EquidistantInLogSpace, 18
EtCentroidRecombinationAlg, 25, 26
EtCentroidVectorRecombinationAlg, 26
EtSumRecombinationAlg, 25, 26
EtSumVectorRecombinationAlg, 26

FasterEtCentroidRecombinationAlg, 25, 26
FasterEtSumRecombinationAlg, 25, 26
FasterKernelRecombinationAlg, 25, 26
FFTWDoubleEngine, 6
FFTWFloatEngine, 7
FrequencyKernelConvolver, 11, 12
FrequencySequentialConvolver, 11, 12, 14, 36
Functor1, 11, 17

Gauss1d, 36
Gauss2d, 34
GaussianNoiseMembershipFcn, 23
Grid2d, 8, 9, 18

Huber2d, 34

IdleJetCorrector, 33
InterpolatedKernel, 32, 34
InterpolatedKernel3d, 32, 35
InterpolatedMembershipFcn, 31, 32
InvalidJetCorrector, 33
invertJetResponse, 33
invertJetResponse2d, 33
InvPower2d, 34

JetMagnitudeMapper, 33
JetMagnitudeMapper2d, 33

KernelConvolver, 11–14
KernelRecombinationAlg, 25–27
KernelSet, 13, 14
KernelVectorRecombinationAlg, 26, 27

Linear2d, 24, 34
LinearInterpolator1d, 33
LinearInterpolator2d, 33
LogProfileKernel, 34

MagneticSmearingKernel, 36
MultiKernelConvolver, 11–13

OpenDXPeakTree, 30

39

Peak, 19, 30
PeakEtaPhiDistance, 19
PeakFinder, 16
PhiGauss, 36
PhiProfileKernel, 36
ProfileKernel, 34
ProximityClusteringTree, 18
PythiaKernel 30 100 v0, 36

RealFrequencyKernel, 36
RealFrequencyKernel1d, 37
RecombinedJet, 28, 29
rectanglePolygonOverlap, 9
rectangleRectangleOverlap, 9
rk::P4, 7

ScalePowerPeakSelector, 17, 18
SequentialConvolver, 11, 14, 18, 36
SimplePeakSelector, 17
SparseClusteringTree, 21
SubGauss, 34
SymmetricBeta, 34
SymmetricBeta1d, 37

40

